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Abstract: This article describes in detail a technique for modeling cavity optomechanical field 
sensors. A magnetic or electric field induces a spatially varying stress across the sensor, which then 
induces a force on mechanical eigenmodes of the system. The force on each oscillator can then be 
determined from an overlap integral between magnetostrictive stress and the corresponding 
eigenmode, with the optomechanical coupling strength determining the ultimate resolution with 
which this force can be detected. Furthermore, an optomechanical magnetic field sensor is compared 
to other magnetic field sensors in terms of sensitivity and potential for miniaturization. It is shown 
that an optomechanical sensor can potentially outperform state-of-the-art magnetometers of similar 
size, in particular other sensors based on a magnetostrictive mechanism. 
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1. Introduction 

Ultra-sensitive field sensors, particularly 

magnetometers, play important roles in multiple 

fields including geology, mineral exploration, 

archaeology, material-testing, and medicine [1]. 

Thus, many different types of magnetometer have 

been developed taking advantage of a range of 

different physical phenomena [1, 2] including giant 

magnetoresistance in thin films [3], magnetostriction 

[4], magnetic force microscopy [5], quantum 

interference in superconductors [6], the Hall effect 

[7], optical pumping [8], electron spin resonances in 

solids [9], and even Bose-Einstein condensation [10]. 

Currently, the most practical and widely used 

ultra-low field magnetometer is based on the 

superconducting quantum interference device 

(SQUID) [11], which achieve a sensitivity of up to  

1 fT Hz–1/2 [1], enabling SQUIDs to detect single flux 

quanta. Their sensitivity is only outperformed by 

spin exchange relaxation-free (SERF) 

magnetometers, which achieve a record sensitivity 

of 160 aT Hz–1/2 at room temperature [8]. 

A sensor of small geometric dimensions, 

combined with high sensitivity, is a requirement for 

many applications. For example in low field nuclear 

magnetic resonance imaging [12, 13], the sensitivity 

of the instruments can be enhanced by reducing the 

distance between the sample and the magnetic field 

sensor. This also applies to investigations in the field 

of solid state physics and superconductivity [14, 15]. 

It is even more relevant for measurements of single 

dipole moments, as the magnetic dipole-field decays 

with the distance r as 1/r3. In medical applications, 

richer diagnostic information is obtained by imaging 

the magnetic field distribution with the highest  
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possible resolution and sensitivity. For example, 

magneto-cardiography (MCG) [1, 16], imaging of 

the magnetic fields generated by the human heart, 

relies on signals in the low pT-range. Neurons in the 

human brain generate even weaker fields, with flux 

densities between 10 fT (for the celebral cortex [17]) 

and 1 pT (for synchronous and coherent activity of 

the thalamic pacemaker cells, resulting in α-rhythm 

[18]). Highly sensitive magnetometers with high 

spatial and temporal resolution are necessary to 

image such fields [17]. Thus, a dense 2-dimensional 

array of sensors with simple readout and 

uncomplicated handling is the ideal platform to 

measure magnetic field distributions with good 

spatial resolution. 

Cavity optomechanical systems have recently 

been demonstrated as the basis for a new form of 

field sensor [19], where the cavity optical resonance 

frequencies are coupled to the mechanical 

deformation of the cavity structure as depicted in 

Fig. 1. The cavity optomechanical system is 

functionalized by the attachment of a material which 

responds mechanically to an applied field, which 

could be, for example, an electric or a magnetic field. 

The response of the material to the applied field 

stresses the mechanical structure of the cavity. This 

causes a shift in optical resonance frequencies of the 

cavity which can be read out using an optical field 

giving a measurement of the applied field. By 

engineering both high quality mechanical vibrations 

in the mechanical structure and high optical quality 

resonances in the optical cavity, the sensitivity of the 

measurement is doubly enhanced. The 

magnetometer demonstrated in [19] was based on 

lithographically fabricated optical microtoroidal 

resonators coupled to the magnetostrictive material 

Terfenol-D. High quality optical and mechanical 

resonances are present in microtoroids, and 

Terfenol-D stretches significantly at room 

temperature under applied magnetic fields resulting 

in experimental sensitivities in the range of one 

hundred nT·Hz–1/2. Theoretical sensitivities in the  

pT Hz–1/2 range predicted for an optimized geometry 

of this construction [19, 20]. Furthermore, a 

combination of lithographic fabrication and fiber or 

waveguide coupling, makes these devices amenable 

to expansion into arrays. 

 
Fig. 1 A cavity optomechanical field sensor, illustrated via 

the example of a Fabry-Perot-type cavity with a harmonic 

spring attached to one of the mirrors. 

Here, we elaborate in detail on the eigenmode 

based method for the calculation of the predicted 
sensitivity of general cavity optomechanical field 
sensors presented in [21]. Furthermore, we compare 

the performance achievable by cavity optomechanical 
magnetometers presented in [19, 20] to other types 
of magnetometers. 

2. Concept of a cavity optomechanical 
field sensor 

The field of cavity optomechanics results from 
the coalescence of two previously separate areas of 
research, optical microcavities and mechanical 

microresonators. An optomechanical system is most 
generally characterized by its ability to couple 
optical and mechanical degrees of freedom. 

Light acts on mechanical degrees of freedom via 
radiation pressure. This aspect of optomechanics has 
been subject to intense research in the past decades 

and has first been experimentally described in 
large-scale interferometric gravitational wave 
experiments [22]. In 1967, Braginsky et al. 

recognized that radiation pressure gives rise to the 
effect of dynamical backaction [23], laying the 
foundation for the description of parametric 

amplification and backaction-cooling [24, 25]. A 
main goal of the field of optomechanics is to 
observe quantum phenomena in mechanical systems. 

Cooling into the quantum ground state has very 



Stefan FORSTNER et al.: Sensitivity and Performance of Cavity Optomechanical Field Sensors 

 

261  

recently been achieved, both in 
nano-electromechanical systems (NEMS) [26] and 
cavity optomechanical systems (COMS) [27]. 

Reciprocally, mechanical displacements x act on 

optical degrees of freedom, as they modify the 

optical path length and manifest as a measurable 

change in the cavities resonance frequency .. This 

relationship is quantified by the optomechanical 

coupling constant 
d

g
dx


 .               (1) 

There are methods to lock the light field to the 

full width at half maximum (FWHM) or maximum 

of an optical resonance. Then, the intensity or phase 

signal of the transmitted light can be measured, 

respectively. In both cases, the measured 

photocurrent I, which is proportional to the 

resonance frequency shift  and thus to the 

displacement x, is enhanced by the optical quality 

factor Qopt relative to the measurement noise 

opt optI Q x Q    .          (2) 

This makes high quality optical microcavities 

ultra-sensitive position sensors. On the microscale, 

toroidal whispering gallery mode resonators reach 

shot-noise limited displacement sensitivities of 

down to 10–19 m Hz–1/2 [28]. The measurement of 

random thermal motion at room temperature is now 

achieved by a variety of optomechanical systems 

[25]. 

By employing a medium capable of transducing 

electric or magnetic field energy into elastic energy, 

an external field exerts a force on one or several 

mechanical degrees of freedom of the COMS, which 

is then transduced into a displacement. 

As force-sensors, COMS are outperformed by 

NEMS, i.e. NEMS cantilevers [29]. Their extremely 

low mass makes them receptive to minute force and 

mass variations enabling even single molecule mass 

spectroscopy. COMS have a larger mass and thus 

seem to be less suited for these applications. 

However, in field sensing the larger volume of 

COMS increases the coupling to external fields and 

makes COMS potentially competitive for ultra-low 

field sensing applications. 

Toroidal whispering-gallery-mode (WGM) 

resonators are prominent representatives of COMS 

and combine simultaneously high quality optical 

resonators (Qopt≈108) and mechanical resonators 

( 410 ,  ~ 10ngmech effQ m ≥ ). Other actively 

researched COMS include photonic crystal cavities 

[27, 30], nanomembranes made from GaAs [31] or 

SiN [32], ZnO-microwires [33], and many others 

[34–37]. 

3. Force and field sensitivity of a general 
optomechanical sensor 

3.1 Eigenmodes 

The mechanical motion of the COMS can be 

decomposed into its intrinsic vibrational eigenmodes, 

allowing the system to be described as a set of 

damped harmonic oscillators. In an isotropic 

homogeneous medium, the equation of motion for 

the mechanical vibration is given by the elastic wave 

equation [38]: 

  2( , ) ( ) ( , ) ( , )u r t u r t u r t          
          (3) 

where the vector field ( , )u r t
 

 denotes the 
displacement of an infinitesimally small cubic 
volume element at the initial position r


 and time t, 

ρ is the density of the material, and λ and µ are the 
Lamé constants: 

(1 )(1 2 )

E
 


 

           (4) 

2(1 )

E





             (5) 

with σ and E being Poisson’s ratio and Young’s 

modulus, respectively. Using the ansatz ( , )u r t 
 

 

( ) ( )r X t   leads to a complete set of orthonormal 

eigenmode solutions: 
( , ) ( ) ( )q q qu r t X t r

  
           (6) 

where ( )qX t  is the time dependent oscillation of 

eigenmode q, and ( )q r 
 is its position dependent 

mode shape function. ( )q r 
 can be normalized 
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such that 3( ) ( )p q pqV
r r d r V   

  
, with V being 

the spatial volume of the oscillator. When inserted 

into (3), this yields the new equation of motion 

    2

( )

( ) ( )
( ).

( )

q

q q

q
q

X t

r r
X t

r

    





       
 
  


    

 
  (7) 

Since the left hand side of this equation is 

evidently independent of the position r


, so must be 

the right hand side, with the term in square brackets 

being constant and causing the elastic restoring force 

of the material. For the mechanical motion to be 

stable, this term must also be negative, and with the 

benefit of hindsight, we define it to equal 2
q  here. 

The equation of motion is then separable into one 

spatial and one temporal equation of motion 

    2 2( ) ( ) ( )q q q qr r r              
      

 (8) 
2

( ) ( )
q q q

X t X t 
             (9) 

with 

    2

2
( ) ( )

( )

q q

q
q

r r

r

    




      
 

    
  .   (10) 

The second equation here is, of course, just Hooke’s 

law for an oscillator with resonance frequency q  

and spring constant 2
q qk M , where M is the 

mass of the oscillator. Hence, as expected, the elastic 

nature of the material causes the amplitude of each 

eigenmode to independently oscillate at a 

characteristic frequency just like a mass on a spring. 

Solving the first equation for the spatial eigenmodes 

of vibration is generally difficult, and in many cases 

only numerical solutions are possible, however the 

solution yields a complete set of orthogonal 

eigenmodes each with a characteristic value for ωq. 

The total displacement vector field ( , )
q

u r t
 

 for a 

general motion of the oscillator can of course be 

expanded as 

( , ) ( , ) ( ) ( )

( ) ( 0) .q

q q q
q q

i t
q q

q

u r t u r t X t r

r X t e 





 

 

 



    

       (11) 

3.2 Including external forces and dissipation 

Let us now consider the response of the 

mechanical modes to a force density ( , )f r t
 

 

applied to the mechanical structure. Including this 

force density, the elastic wave (3) becomes 

  2

( , )

( ) ( , ) ( , ) ( , ).

u r t

u r t u r t f r t



  



       

 
        (12) 

Expanding the displacement vector field ( , )u r t
 

 

as in (11) and inserting the definition of q  [see 

(10)] yields 

2

( ) ( )

( ) ( ) ( , ).

pqq q
q

q q q
q

X t r

X t r f r t

 

  

 

 





 

        (13) 

After multiplying both sides with ( )p r 
 and 

integrating over the spatial volume V of the 

oscillator, the orthonormality relation ( )pV
r

 
  

3( )q r d r 
 

pqV  can be exploited, leading to 

2 3

( )

( ) ( ) ( , )

pqq
q

q q pq q
q V

X t V

X t r f r t d r

 

   



  



 



       (14) 

 2 3( ) ( ) ( ) ( , )p p p q

V

M X t X t r f r t d r    
    (15) 

where we introduce the total mass of the oscillator 

M V . In order to obtain an expression for the 

right hand side of (15), we separate the force density 

into temporally and spatially varying components, 

which it is convenient to express in terms of the 

mechanical eigenmodes of the system 
1

( , ) ( ) ( ).q q
q

f r t F t r
V

 
  

        (16) 

The right hand side of (15) then computes to 

3 1
( ) ( , ) ( ) ( ),q q pq p

qV

r f r t d r F t V F t
V

   
  

 (17) 

and ( )qF t  is identified as the force in Newtons 

acting on the mechanical eigenmode q. This yields 

independent equations of motion for each 

mechanical mode 
2( ) ( ) ( ) ( )q q q q q qM X t X t X t F t     

     (18) 

where we have introduced independent linear decay 

with rate q to each of the mechanical eigenmodes as 
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is typical of damping in mechanical oscillators. The 

force ( )qF t  can contain forces from a range of 

different sources. The three forces relevant are the 

random thermal force , ( )th qF t , the radiation 

pressure force from the presence of the optical field 

used to monitor the mechanical motion , ( )rp qF t , and 

the force applied by the signal field which we aim to 

detect sig, ( )qF t ; with the total force 

, , ,( ) ( ) ( ) ( )q th q rp q sig qF t F t F t F t   . The thermal force 

can be shown from the fluctuation-dissipation 

theorem to equal [39] 

, ( ) 2 ( )th q q B qF t M k T t       (19) 

where 1.381Bk  m2
 kg s–1

 K–1 is the Boltzmann 

constant, T is the temperature of the system, and 

( )q t  is a unit white noise Wiener process. The 

radiation pressure force can be determined from 

Hamiltonian mechanics using the optomechanical 

interaction Hamiltonian [40] 

, ( ) ( )I q q qH G X t n t          (20) 

where / Xq q qG d d  is the optomechanical 

coupling strength, and q(t) is the number of photons 

within the optical resonator. The result is 

,
, ( ) ( ).I q

rp q q
q

H
F t G n t

X


 


      (21) 

Hence, the equation of motion for the 

mechanical mode q can be expressed as 
2

,

( ) ( ) ( )

2 ( ) ( ) ( ).

q q q q q

q B q q sig q

M X t X t X t

M k T t G n t F t





    

   

 


   (22) 

3.3 Conversion to measurable parameters 

In the case considered here of optical 

measurement, the measured signal is the frequency 
shift on the optical mode 0q q     where 0  

is the unperturbed optical resonance frequency of an 
intrinsic optical mode of the cavity, and q  is the 

modified resonance frequency as a result of the 

mode displacement Xq(t). Of course, the total 

frequency shift due to the action of several 
mechanical eigenmodes is given by qq

    . 

Equation (22) completely describes the motion of 

the qth mechanical eigenmode of the oscillator. In 

principle, the resulting frequency shift on the optical 

mode can be determined from the optomechanical 
coupling rate /q q qG d dX   to 

( )q q qG X t  .          (23) 

However, in general neither the displacement 
parameter Xq(t) nor the raw optomechanical 
coupling rate Gq are directly accessible in 

experiments. The measured frequency shift on the 
optical mode, which provides the change in optical 
path length x(t) rather than Xq(t). Hence, to apply (18) 

to optical measurements made on a cavity 
optomechanical system, the length coordinate must 
be rescaled in terms of this measured variable. 

Furthermore, since the optomechanical coupling rate 
is defined in terms of the optical resonance 
frequency shift for a given displacement of the 
mechanical oscillator, the use of a different length 

scale results in a modification to this rate. The raw 
optomechanical coupling rate Gq must therefore also 
be replaced with the measurable optomechanical 

coupling rate g. It is defined with respect to the 
optical path length x, and therefore, it does not 
depend on the displacement pattern of the particular 

mechanical eigenmode q but only on the geometry 
of the oscillator. The purpose of this section is to 
mathematically perform the transformation to these 

measurable parameters. To rescale the position 
coordinate, we recognize that the optomechanical 
interaction energy must remain constant under a 

change in the coordinate system, so that 

, ( ) ( ) ( ) ( )I q q q qH G X t n t gx t n t        (24) 

where xq is the change in the optical path length as a 
result of motion of the qth mechanical mode, and of 
course the total change in the optical path length is 
just the sum over ,q qq

x x x . The directly 

measurable optomechanical coupling strength in the 
new optically defined coordinate system is 

/q qg d dx  . Consequently, we have 

( ) ( ).q q
q

g
X t x t

G
            (25) 

Similarly, since the potential energy of the 
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mechanical mode Uq must be constant under the 

co-ordinate transformation, we have 

2 2 2 21 1
( ) ( )

2 2q q q q q qU M X t m x t   ,     (26) 

so that 
2 2

q q

q q

x GM

m X g

   
        

.         (27) 

Rearranging (27), we find  

q
q

M
G g

m
 .          (28) 

For the purpose of theoretical modeling of an 
optomechanical system, the ratio g/Gq can be 
calculated using a weighting function ( )r  , which 

quantifies the frequency shift created by a 
displacement ( )q r

 
 of the volume element at 

position ( )r


 (compare [40]) 

3( ) ( )
q qV

g M
w r r d r

G m
  
  

.      (29) 

The exact determination of ( )r   can be 

complicated, however, useful approximations can be 
made, dependent on the structure of a particular 
optomechanical system. For example in a 

Fabry-Perot cavity, the effect of a mirror 
displacement at a position r


 normal to its surface 

is weighted by the normalized electromagnetic  

flux density at that location [41]. In 
whispering-gallery-mode cavities, one can 
approximate ( )r   by considering the effect of a 

mechanical displacement of the cavity boundary on 
the electromagnetic energy stored in the optical 
mode [40]. However, in experiments it is generally 

easier to directly determine / qM m , and thus 

/ qg G  [from (27)] by measurement, which in these 

cases, makes the rather complicated weighting 
function redundant. By substituting for Xq(t) and Gq 

in (22), and re-scaling with / qM m , an equation 

of motion for the mechanical oscillator eigenmodes 
in terms of measurable parameters is finally 

obtained 

2

,

( ) ( ) ( )

2 ( ) ( ) ( ).

q q q q q

q
q q B q sig q

m x t x t x t

m
m k T t gn t F t

M





    

   

 


 (30) 

The first term on the right hand side can be 
interpreted as an effective thermal force, related to 
measurable quantities [42]. This equation of motion 

is identical in form to the unscaled equation of 
motion, except for a scaling of the signal force by 
the ratio of optomechanical coupling rates. 

3.4 Force and field sensitivity 

To determine the sensitivity of the cavity 
optomechanical sensor, we start by solving (30) in 
the frequency domain. Taking the Fourier transform, 

we find 

,

( )

( ) 2 ( ) ( ) ( )

q

q
q q q B q sig q

x

m
m k T gn F

M



     



 
   

  


 

(31) 
where 2 2 1[ ( Γ )]q q q qx m i       is the 

susceptibility of the qth mechanical mode. As 
mentioned before, this causes an observable shift in 
the resonance frequency of the optical resonator. The 

magnitude can be determined from (23) and (25) as 
( )q qgx t   so that in the frequency domain we 

have 

,( ) ( ) 2 ( ) ( ) ( ) .q
q q q q B q sig q

m
g m k T gn F

M
       

 
     

  
                (32) 

The spectral power contributions from the signal 

( )sigS  and noise ( )noiseS   in the final detected 

signal can then be calculated as 
2

, ( )sig q
qS                (33) 

22, ( ) ( ) ( )noise q meas
q qS S           (34) 

where we have included the measurement noise term 

( )measS   which accounts for shot and frequency 

noise on the laser field and other noise sources such 
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as electronic noise in the detectors used to measure 

the optical field. As this type of noise is not caused 

by a shift in the optical coordinate x, the 

measurement noise is independent of the mechanical 

mode q. Taking a signal force at the single frequency 

, ,, ( ) ( )sig sig q sig q sigF F      , we find the spectral 

contribution of the signal 
2, 2 2

,( ) ( ) ( )qsig q
q sig q sig

m
S g F

M
           (35) 

where we have used the fact that ( ) 0q     and 

( ) 0n     for 0  . To calculate the noise 

contribution from the fact that ( )q t  is unit white 

noise such that 2| ( ) | 1t   , using Parseval’s 

theorem we obtain 2| ( ) | 1    , and we define the 

fluctuations in the photon number within the optical 

resonator ( ) ( ) ( ) ( )n n n n         . This yields 
,

22 2 2

( )

( ) 2 ( ) ( ).

noise q

q q q B qn meas

S

g m k T g n S



    

 

    
 

(36) 
The minimum detectable force ,

min
sig qF is obtained by 

integrating signal and noise contributions over the 

bandwidth of the measuring system resolution 

bandwidth (RBW) and setting the signal and noise 

powers equal such that the signal-to-noise ratio is 

unity: 

2 2
22

1
2 ( ) .

( )

min
sig meas

q B qn
act q q

F SM
M k T g n

c mRBW g
 

 

 
    
 
 
               (37) 

In order to determine the sensitivity to an 

applied spatially uniform field ( ) sigi tt e  
 

, the 

body force density ( , )sigf r t
 

 due to the applied 

field must be determined. It can be extracted from a 

finite element model or estimated analytically. The 

force on a specific mechanical eigenmode can then 

be found via 
3

, ( ) ( ) ( , ) ,sig q q sig

V

F t r f r t d r 
  

   (38) 

which follows from (17) and (18) and the 

orthonormality relation for mechanical eigenmodes. 

In typical circumstances, a linear relationship will 

exist between this force and the amplitude of the 

applied field, such that , | |sig n actF c 


 where the 

actuation constant cact determines the strength of the 

coupling. actc  depends on the material properties of 

the transduction medium, and it is determined for 

the case of a magnetostrictive material in [20]. The 

minimum detectable field is then simply found by 

substituting this relationship into (37): 

2 2
22

1
2 ( )

( )

min

min

meas

meas
q B qn

act q q

t
RBW

SM
M k T g n

c m g




 
 

  

 
   
 
 






 

(39) 

where 1/meast RBW  is the minimum time 

required to detect a field of amplitude | |min


 with 

a signal-to-noise ratio of one. It can be seen that, in 

the usual limit where the radiation pressure force 

due to photon number fluctuations is negligible, 

high mechanical quality factor /q q qQ    is 

always advantageous for precise sensing, reducing 

the thermal noise, and also, on resonance, the effect 

of the measurement noise through its contribution to 
2 2 1( ) [ ( )]q q q qx m i        . 

In this limit, a low effective mass is beneficial 

for sensing, as its total effect will be a suppression 

of the measurement noise. Also improving the 

optical quality factor of the cavity is of advantage, 

as common measurement techniques convert a 

frequency shift signal to an amplitude- or 

phase-signal, which is enhanced as Qopt relative to 

the measurement noise [see (2)]. 

3.5 Quantum limited detection 

In the following, the fundamental quantum limit 

for the detection of a field by the means of a cavity 

optomechanical system is analyzed. For the case of 

an ideal quantum limited measurement, the 

corresponding noise measS  is constituted by the 

fundamental imprecision of the measurement ,im qnS  
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due to the limited photon number (shot noise) [40] 

 22
,

2

/ 2
( ) ( ) ,

4
meas im qnS S

n

 
 

 


      (40) 

where   is the decay rate of the optical mode, and 

n  is the mean photon number in the system. The 

quantum limited fluctuation of the radiation pressure 

force is known as quantum back-action [40] 

 

, 2 2

2 4

22

( ) ( )

( )
/ 2

ba qn
qn

q

S g n

n g

  

 
 

 






       (41) 

where ( )qnn   denotes the quantum limited 

photon number fluctuation. Both ,im qnS  and ,ba qnS  

can be derived from the quantum Langevin 

equations [43]. From the above equations, it is 

immediately clear that , 21/im qnS n  , whereas 
, 2ba qnS n   and thus an optimal mean photon 

number optn  can be found by minimizing the sum 
, ,qn im qn ba qnS S S     

 2
2

( / 2) .
2

q q q
opt q

m
n

g


 




 


       (42) 

Inserting this into (40) and (41) yields the simple 

result 
, 2( ) ( ) ,im SQL

qS g            (43) 

which is known as the standard quantum limit. It 

corresponds to a measurement wherein the 

fundamental Heisenberg-uncertainty is equally 

distributed between position and momentum 

quadrature. This can be seen from the fundamental 

inequality in the imprecision-back action product 

[44] 

2
im baS S 


≥ ,            (44) 

with the mechanical displacement spectrum 
2/im im

xx qS S g  and the force spectrum 
, 2/ | |ba ba qn

FF q qS S g x . Identical position and 

momentum uncertainties at the Heisenberg-limit 

correspond to 
2, ,( ) ,

2
im SQL ba SQL

q FF qS S    


     (45) 

and we retrieve the standard quantum limit by 

adding its contributions 

22 , 2 ,( ) .SQL im SQL ba SQL
xx q FFS g S g S       (46) 

Consequently, the quantum limit for field 

detection follows by inserting ( )SQL
xxS   into (39). 

,

,

1
2 .

( )

min SQL

min SQL

meas

q B
act q q

t
RBW

M
M k T

c m




 

 

  





    (47) 

As discussed regarding (39), a high mechanical 
quality factor (i.e. a low damping q ) and a low 
effective mass are favorable for sensing. The optical 
quality factor does not have a direct influence on the 
quantum limited detection sensitivity, however it can 
still be considered an advantage as a lower optical 
loss rate decreases the mean photon number 

optn required to achieve measurements at the 
quantum limit, making them technically more 
feasible. 

4. Comparison of a cavity optomechanical 
magnetometer with other state-of-the-art 
magnetometers 

Cavity optomechanical field sensors are 

particularly attractive as miniature magnetometers, 

with sensitivities in the range of nT Hz–1/2 already 

demonstrated in a recent experiment and a 

theoretical model predicting sensitivities below  

one pT·Hz–1/2 [19, 20]. It is interesting to compare 

the results presented in [19, 20] to several types of 

state-of-the-art magnetic field sensors such as 

SQUIDs, SERFs, Hall sensors and in particular 

other magnetometers based on a magnetostrictive 

mechanism. In Fig. 2, the detection volume of 

several recently developed magnetometers is shown 

versus their sensitivities. This measure is 

particularly useful for evaluation of the ability of 

different magnetometers to detect the field from a 

magnetic dipole, as dipole fields decay with r3 as a 

function of the distance r from their source, and for 

magnetic field imaging where a high spatial density 

of sensors is required. Generally, the volume is 

representative of the typical distance of a sample to 
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the center of the sensor. However, technical 

constraints cause this distance to be much greater in 

some sensors, such as SQUIDs which require 

cryogenic cooling. 
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Fig. 2 Sensitivity vs. detection volume of some modern 

state-of-the-art magnetic field sensors. Shown are SERF 

magnetometers (circles) [8, 45], SQUIDs (small asterisk) 

[46–48], Hall-sensors (crosses) [49, 50], 

nitrogen-vacancy(NV)-center based magnetometers (bold 

asterisk) [51, 52]. Magnetostrictive sensors (rectangles) can be 

found in various sizes and their sensitivity generally lies above 

modern sensors of comparable size [4, 53, 54], and their 

sensitivity can be greatly enhanced by coupling the 

magnetostrictive material to an optomechanical cavity 

(triangles), as described in this article (the figure partly based on 

[51]). 

Hall sensors use the Lorentz-force on charge 

carriers in a semiconductor to detect magnetic fields 

and are today among the most commonly used 

magnetic field sensors due to their cost efficiency 

and flexibility. They have recently been fabricated 

on the sub-micron scale [49, 50]. Their sensitivity is 

generally limited to some nT Hz–1/2 by intrinsic 

electronic noise in the semiconductor [55]. 

Much research effort is directed toward the 

development of NV-center based magnetometers. 

They achieve sensitivities as good as 4 nT·Hz-1/2 at 

room temperature [52], and magnetic field imaging 

[51], and magnetic resonance imaging [56] at the 

nanoscale. However, NV center based 

magnetometers have some constraints, including 

sensitivity to magnetic field misalignment [57], 

complexity of the magnetic field readout [58], and 

the requirement of bulky optics. 

SERF magnetometers measure magnetic fields 

by monitoring a high density vapor of alkali metal 

atoms precessing in a near-zero magnetic field [59]. 

SERFs have been used successfully in various 

applications including medicine and geology, but 

suffer from two drawbacks. Firstly, they are 

relatively large with dimensions at least in the 

mm-range even when using micro-fabricated gas 

cells [45]. Secondly, they have a low dynamic range, 

and even at geomagnetic field strengths (≈50 μT) are 

adversely affected by the non-linear Zeeman effect 

[11, 16]. 

In SQUIDs [11], the magnetic field induces a 

current in a superconducting loop containing 

Josephson junctions. Although they achieve 

excellent sensitivities, SQUIDs require cryogenic 

cooling, which increases operational costs, 

complicates applications and increases the crucial 

distance between sensor and sample. 

Magnetostrictive magnetometers provide a 

possible avenue towards miniaturization and 

integration of room temperature magnetometers. 

Magnetic fields induce mechanical stress in the 

sensor material. This stress is measured either 

electrically using a piezoelectric mechanism or 

optically using interferometry. Unlike other classes 

of magnetic field sensors, magnetostrictive 

magnetometers exist in a broad range of sizes, 

ranging from microscopic Terfenol-D coated 

micro-cantilevers to fiber interferometers with 

sensitivities of fT·Hz-1/2 and sizes of several 

centimeters, which shows their extraordinary 

flexibility. The design presented in [19, 20] had two 

major advantages when compared to other 

magnetostrictive based magnetic field sensors. 

Firstly, the optical field, which is used for 

measurement, is strongly amplified locally by using 

an optical cavity. Secondly, the mechanical strain, 
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which originates from the magnetostrictive 

mechanism, is enhanced by the mechanical 

eigenmodes of the system. An optomechanical 

magnetometer could potentially outperform 

conventional magnetometers in its volume range, 

including cryogenic SQUIDs. 

5. Conclusions 

We have presented a technique to predict the 

sensitivity of cavity optomechanical field sensors. 

This technique could be used to optimize the design 

of these sensors. Furthermore, we have shown that 

the sensitivity of magnetostrictive magnetometers 

can be greatly enhanced by introducing an 

optomechanical cavity to detect the induced 

magnetostrictive stress. Such a magnetostrictive 

based cavity optomechanical magnetometer can 

potentially outperform state-of-the-art sensors of 

comparable size. 
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